ORIGINAL PAPER

A New Genus of Ergasilidae (Copepoda: Cyclopoida) from the Gills of *Astyanax fasciatus* (Cuvier, 1819) (Actinopterygii: Characidae)

Rodrigo Bravin Narciso¹ · Heleno Brandão² · Gilmar Perbiche-Neves³ · Reinaldo José da Silva¹

Received: 26 May 2019 / Accepted: 6 August 2019 © Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2019

Abstract

Purpose To describe a new genus and a new species of an ectoparasitic ergasilid (Copepoda, Ergasilidae) parasite of the red-tailed lambari, *Astyanax fasciatus*, from Jurumirim Reservoir (Upper Paranapanema River), São Paulo State, Brazil. **Methods** The host fish were collected using multi-panel gill nets. The gill of each fish was washed and examined in a stereo microscope for copepods. The copepods found were stored in 70% ethanol, cleared in lactic acid, and mounted in Hoyer's medium. Some specimens were dissected in glycerol medium and then each dissected part was mounted on individual slides. **Results** A new genus and a new species of Ergasilidae were described herein. *Duoergasilus basilongus* n. gen., n. sp. differs from all other ergasilids in having the second and third pair of biramous swimming legs (P2 and P3) each with a 2-segmented endopod, and by its unique maxillary basis, resembling a whip.

Conclusions The new copepod is the first 'four-legged' ergasilid with all swimming legs having a 2-segmented endopod. *Duoergasilus basilongus* n. sp. represents the first record of a parasitic copepod on *A. fasciatus* in Jurumirim Reservoir, as well as its represents the first description to species level of an ergasilid infecting an *Astyanax* species in Brazil. A key to the 28 accepted genera of Ergasilidae is provided.

Keywords Brazil · Ectoparasite · Freshwater · Identification key · Jurumirim · Teleostei

Introduction

The cyclopoid copepod family Ergasilidae Burmeister, 1835 represents one of the most important and numerous families of parasitic copepods in freshwater, typically found on fishes [1, 2]. The majority of the ergasilids are only known by the post-mated adult females, which represent the parasitic phase of their lifecycle, whereas the developmental stages (from nauplius to adults) and males are free-living organisms [3]. Although small, several species can cause severe damage to their hosts' organs [4, 5], such as when attached to the gills, ergasilids can induce epithelial hyperplasia, metaplasia, lamellar fusion, necrosis, an increase in mucus

Rodrigo Bravin Narciso rodrigoparasitologia@gmail.com

- ¹ Institute of Biosciences, São Paulo State University (Unesp), Botucatu, Brazil
- ² Universidade Tecnológica Federal do Paraná (UTFPR), Santa Helena, Brazil
- ³ Universidade Federal de São Carlos (UFSCAR), Buri, Brazil

production, and/or an interruption of blood flow (e.g., tourniquet effect induced by species of *Acusicola* Cressey, 1970, *Amplexibranchius* Thatcher et Paredes, 1985, and *Miracetyma* Malta, 1993), which can lead to a decrease in respiratory efficiency, growth, or even lead their hosts' death [4, 5].

In Brazil, Ergasilidae is the largest family of parasitic crustaceans with about 69 species from 17 genera: Acusicola; Amplexiobranchius; Brasergasilus Thatcher et Boeger, 1983; Ergasilus von Nordmann, 1832; Gamidactylus Thatcher et Boeger, 1984; Gamispatulus Thatcher et Boeger, 1984; Gamispinus Thatcher et Boeger, 1984; Gauchergasilus Montú et Boxshall, 2002; Miracetyma; Pindapixara Malta, 1995; Prehendorastrus Boeger et Thatcher, 1990; Pseudovaigamus Amado, Ho et Rocha, 1995; Rhinergasilus Boeger et Thatcher, 1988; Tiddergasilus Marques et Boeger, 2018; Therodamas Krøyer, 1863; Urogasilus Rosim, Boxshall et Ceccarelli, 2013; and Vaigamus Thatcher et Robertson, 1984 [6, 7] Except for Acusicola, Ergasilus, and Therodamas, all others are endemic to Brazil [8]. Despite the high number of species known, some authors assume that the diversity of ergasilids in Brazil is still underestimated due the fact that only a small proportion of Brazilian fish species (about 6.5%

Astyanax Baird et Girard, 1854 is a speciose characid genus, with about 150 valid species [9]. Species of this genus have a wide distribution, occurring in diverse habitats within freshwater drainages from the southern United States to central Argentina [10]. In Brazil, Astyanax fasciatus (Cuvier, 1819) is one of the most abundant and widely distributed species [11]. This small characid is associated with a wide variety of parasitic invertebrates, especially parasitic helminths (see Table 2 for a list of parasite species reported for this fish), being considered one of the Neotropical fish species with the largest variety, and one of the most well-known parasite invertebrate faunas [12, 13]. So far, there is only one record of an ergasilid, *Ergasilus* sp., parasitizing the gills of *A. fasciatus* [14].

During a parasitological study of fishes from Jurumirim Reservoir (Upper Paranapanema River), São Paulo State, Brazil, we detected several individuals of an ergasilid species on the gills of the red-tailed lambari, *A. fasciatus*. Herein, we describe these specimens as a new species and propose a new genus to accommodate the new species.

Materials and Methods

Specimens of *A. fasciatus* were collected from April 2011 to October 2012 from Jurumirim Reservoir (Upper Paranapanema River) (23°28'20.28"S, 048°38'34.40"W), municipality of Angatuba, São Paulo State, Brazil. Fish were collected using multi-panel gill nets (3–14 cm mesh) soaked for 14 h. Hosts were individually stored in plastic bags and placed in a freezer before necropsy. The gills of each fish was thawed by placing them in a petri dish with tap water and examined for copepods using a stereomicroscope. Copepods were removed from the gill using a fine needle, stored in 70% ethanol, cleared in lactic acid, and mounted in Hoyer's medium. Whenever necessary, some specimens were dissected in glycerol medium and then each part was mounted on individual slides. Coverslips were sealed with transparent nail varnish.

Morphological analyses and measurements of whole/dissected copepods were made using a microscope with differential interference contrast optics (Leica DMLB 5000, Leica Microsystems). Drawings were made with the aid of a microscope (LeicaDMLS, Leica Microsystems, Wetzlar, Germany) equipped with a drawing tube. All measurements are in micrometres (μ m) and presented as the mean and standard deviation followed by the range in parenthesis. Anatomical terms followed Boxshall and Montú [15], and that key was used to identify copepod specimens to family. The nomenclature used for the antennary segmentation have followed the following considerations: the ergasilid antenna is 4-segmented (comprising coxobasis and three endopodal segments) and the claw is an armature element derived from the third endopodal segment [16]. Ecological descriptors such as prevalence, mean abundance, and intensity were calculated in accordance with Bush et al. [17].

Type specimens (holotype and paratypes) were deposited in the Invertebrate Collection of the Instituto Nacional de Pesquisas da Amazônia (INPA), municipality of Manaus, Amazonas State, Brazil.

Results

Duoergasilus n. gen.

Diagnosis: Body cyclopiform, comprising prosome, urosome, and caudal rami; prosome consisting of cephalosome and first pedigerous somite (PS-1), separated dorsally by non-functional articulation fused ventrally, and three free pedigerous somites (PS-2-PS-4); urosome consisting of fifth pedigerous somite (PS-5), genital double-somite, and three free abdominal somites (AS-1-AS-3); caudal rami armed with four bare setae. Antennule 5-segmented. Antenna 3-segmented, comprising coxobasis, 2-segmented endopod (enp), and claw; claw bent at nearly right angle, bearing spine on concave margin. Buccal apparatus comprising labrum, mandible, maxillule, and maxilla. Mandible with two blades (anterior and posterior). Maxillule armed with three unequal distal setae. Maxilla 2-segmented, comprising syncoxa and basis; syncoxa broad, unornamented; basis with posterior part reduced, ending as thin extension. Four pairs of biramous swimming legs (P1-P4); P1-P3 with 2-segmented enp and 3-segmented exopod (exp); P4 with both rami 2-segmented. Fifth leg (P5) reduced, represented by bare seta. Egg sacs paired, multiseriate.

Differential diagnosis: Four pairs of biramous legs; P1–P3 with 3-segmented exp and 2-segmented enp; P4 with both rami 2-segmented. Maxillary basis whip-shaped, with posterior part reduced, ending as a thin extension.

Type-species: Duoergasilus basilongus n. sp.

Etymology: The Latin "duo" (=two) refers to the presence of four pairs of biramous swimming legs, each having a 2-segmented endopod.

Remarks

Based on the key proposed by Boxshall and Montú [15], the new copepod is placed in the Ergasilidae, because it possesses: (1) mandible small, and armed with terminal blades; (2) adult female with copulatory pores not separated, and situated within dorsolaterally located paired genital apertures; (3) female body typically cyclopiform, with defined external segmentation; and (4) P1–P3 with segmented rami. It also possesses features listed by Kabata [18] as diagnostic for this family as follow: (1) cephalosome separated or fused with PS-1; (2) abdomen comprising 1–3 segments; (3) antenna subchelate with, usually one, sometimes two or three, apical claws; and (4) maxilliped and P6 absent in adult females.

The new genus is mainly characterized by the possession of P2 and P3 with 2-segmented enp. Among the 28 valid genera of Ergasilidae, only the monotypic genus, Urogasilus possess P2 and P3 with 2-segmented enp. However, Duoergasilus basilongus n. sp. cannot be included as a member of Urogasilus by its possession of: (1) mandible armed with two blades (rather than one blade); (2) maxillary basis with posterior part reduced, ending as a thin extension (rather than tapering to trifid apex); (3) antenna 3-segmented (rather than 4-segmented); (4) claw with spine on concave margin (rather than without such spine); (5) abdomen 3-segmented (rather than 1-segmented); (6) P4 biramous (rather than reduced and represented by bare seta); and (7) egg sacs multiseriate (rather than uniseriate). In addition, the new genus is easily separated from Urogasilus in having PS-4, PS-5, and genital-double somites free (rather than fused to form a long trunk as in Urogasilus).

Among the four-legged genera (adult females with four pairs of biramous swimming legs), P4 with both rami 2-segmented has already been described as a diagnostic feature for adult females of Pindapixara and Tiddergasilus, and for some species of Ergasilus and Neoergasilus Yin, 1956 [19]. The new species shares with these four genera the same segmentation pattern of P4. In addition, based on morphological comparison of antenna, the new genera shares some antennary characters with Tiddergasilus, as: antenna 4-segmented, lacking enp-3; enp-2 shorter than previous segments and unornamented (e.g., lacking spines, spinules, or sensilla); and claw shorter than other antennary segments and with spine/indentation on concave margin. However, the new genus differs from these four genera, including Tiddergasi*lus*, by the possession of the unique combination of features, as: (1) antennule 5-segmented (rather than 6-segmented); (2) antenna 3-segmented, lacking enp-3 (rather than 4-segmented as in Ergasilus, Neoergasilus, and Pindapixara); maxillary basis whip-shaped (rather than armed with multiple teeth along posterior margin); (3) P1 with 2-segmented exp (rather than 3-segmented as in Ergasilus and Neoergasilus); and (4) P2-P3 with 2-segmented enp (rather than 3-segmented). Additionally, the new genus diverges from Ergasilus and Neoergasilus in having antennary enp-2 straight, short (shorter than coxobasis and enp-1) and unornamented (rather than strongly curved, usually equal to or larger than previous antennary segments, and armed with one or two sensilla on concave margin). The new genus also differs from Pindapixara in having antennary claw short, shorter than previous segments (rather than longer than other antennary segments), and with a spine on concave margin (rather than lacking such spine).

Based on the morphological differences listed above, we propose here a new genus, *Duoergasilus* n. gen., to accommodate the new ergasilid species, *Duoergasilus basilongus* n. sp.

Family Ergasilidae Burmeister, 1835

Duoergasilus basilongus n. sp. (Figs 1, 2, 3, 4, 5)

Description of/female (based on 13 female specimens; no male observed): Overall length, from the anterior end of cephalothorax to posterior margin of caudal rami (excluding egg sacs), 684 ± 97 (583–827). Body cyclopiform (Fig. 1), comprising prosome, urosome, and caudal rami; prosome consisting of cephalosome and PS-1, separated dorsally by non-functional articulation but fused ventrally, and three free pedigerous somites. Cephalosome (Fig. 1b) with dorsal eyespot, tapering more sharply anteriorly than posteriorly, broadly rounded posteriorly, maximum width at the level of buccal apparatus, 352 ± 51 (307–408) long, 168 ± 6 (159–174) wide. Pedigerous somites decreasing gradually in width from anterior to posterior (Fig. 1b); PS-2 narrower than cephalothorax (Fig. 3a), with paired integumental windows laterally on tergite, 52 ± 6 (45–61) long, 168 ± 6 (159-174) wide; PS-3, 50.5 ± 8.5 (43-64) long, 130 ± 9 (121-148) wide; PS-4, 36 ± 5.5 (29.5-45) long, 88 ± 4.5 (82-95) wide.

Urosome consisting of PS-5, genital double-somite, and three free abdominal somites (Fig. 2a); PS-5 narrower than prosome somites, unornamented, 15 long, 65 wide; genital double-somite, 1.5 wider than long, bearing paired slit-like genital apertures dorsally (Fig. 3b), ornamented with paired spinule rows ventrally (Fig. 2a), 60 ± 3 (55–63) long, 90 ± 7 (76-97) wide; abdominal somites decreasing gradually in width from anterior to posterior (Fig. 2a); each somite ornamented with posterior spinule row along ventral margin; AS-1, 16 ± 3 (12–21) long, 48 ± 4.5 (43–57) wide; AS-2, 14 ± 5 (7–21) long, 42 ± 2 (40–44.5) wide; AS-3 (= anal somite) deeply incised in midline (Fig. 2a), with paired spinule rows on ventral surface, 19.5 ± 3 (17–23.5) long, 40 ± 2 (38–43.5) wide. Caudal ramus (Fig. 2b), two times longer than wide; each ramus ornamented with paired spinule rows on ventral surface, and armed with four bare setae; seta I and III shortest, both arising ventrally; seta II about three times longer than seta I and III; seta IV longest, 172 ± 36 (120-210) long. Egg sac paired, multiseriate, 415-534 long, 163-195 wide; egg spherical, 80-85 diameter (Fig. 1a).

Rostrum quadrangular, ventrally directed, without sensilla or pores (Fig. 3c). Antennule 5-segmented (Fig. 3d), 115 ± 8.5 (98–127) long, 27 ± 2 (24–30) wide, setal formula: 12, 6, 4, 2, 7 (total 31); third to fifth segment, each armed with minute distal seta (arrowed in Fig. 3d). Antenna

Fig. 1 *Duoergasilus basilongus* n. gen., n. sp.—adult female. **a** Body, ventral view. **b** Body, dorsal view. **c** Body and buccal apparatus (arrow), lateral view. Scale bars in micrometers (μ m)

Fig. 2 *Duoergasilus basilongus* n. gen., n. sp.—adult female. **a** urosome, ventral view. **b** caudal rami armed with four setae (I–IV). Scale bars in micrometers (μ m)

3-segmented (Fig. 3e), comprising coxobasis, 2-segmented enp, and claw; coxobasis broad, bearing short naked seta, 81 ± 7.5 (71–95) long, 57 ± 5 (49–63) wide; enp-1 ornamented with spinule row along outer margin, 84.5 ± 3 (78–88) long, 46 ± 4 (41–54) wide; enp-2 unornamented, 44 ± 3 (38–47) long, 14 ± 1 (13–17) wide; claw shorter than previous segments, bent at nearly a right angle, armed with spine on concave margin, 25.5 ± 2 (21–29) long, 22 ± 3 (16–27) wide (Fig. 3f). Buccal apparatus comprising labrum, mandible, maxillule, and maxilla (Fig. 4a); labrum broad, tapering posteriorly, partially covering other buccal components (Fig. 4b); ventral body wall forming floor for buccal appendages, with distal margin thicker than lateral margins (Fig. 4c); mandible armed with two blades (anterior and posterior blade), and hook-like filament; anterior blade with spinules along posterior margin, armed with apical tooth; posterior blade scimitar-shaped, with two apical teeth (Fig. 4d); maxillule narrowing distally, armed with three unequal distal setae (Fig. 4e); maxilla 2-segmented, comprising syncoxa and basis; syncoxa broad, unornamented, non-covered by labrum; basis with posterior part reduced, ending as a thin extension (Fig. 4f).

P1–P4 biramous (Fig. 5), comprising coxa, basis, and segmented rami (enp and exp); coxa unornamented; basis bearing bare outer seta; basis of P2–P4 ornamented with spinules on dorsal surface; enp 2-segmented (including enp-1 and enp-2); enp-1 (= proximal segment) and enp-2 (= distal segment) with spinules along outer margin; exp

Fig. 3 *Duoergasilus basilongus* n. gen., n. sp.—adult female. **a** second free pedigerous somite, showing lateral integumental windows. **b** genital double-somite, dorsal view. **c** rostrum. **d** antennule, with distal minute seta on segments III to V (arrows). **e** antenna. **f** distal end

of antenna. ${\bf g}$ intercoxal sclerites and interpodal plates, with paired spine-projections on dorsal-margin (arrows). Scale bars in micrometers ($\mu m)$

Fig. 4 *Duoergasilus basilongus* n. gen., n. sp.—adult female. a buccal apparatus (complete). b labrum. c ventral body wall. d mandible. e maxillule. f maxilla. Scale bars in micrometers (μ m)

3-segmented, except for 2-segmented exp of P4; exopodal segments lacking spinules. P5 reduced (Figs. 2a, 3b), represented by bare seta. Spine and setal formula of biramous swimming legs as presented in Table 1.

Intercoxal sclerites slender, unornamented, both ends directed posteriorly (Fig. 3g). Interpodal plates with paired spine-like process on posterior margin (arrowed in Fig. 3g); interpodal plate of P4, absent.

Fig. 5 Duoergasilus basilongus n. gen., n. sp.—adult female. a Leg 1. b Leg 2. c Leg 3. d Leg 4. Scale bars in micrometers (µm)

Swimming leg	Coxa	Basis	Endopod	Exopod
P1	0–0	1–0	0–1; II–5	I-0; 0-1; II-5
P2	0–0	1–0	0–1; I–5	I-0; 0-1; I-6
P3	0–0	1–0	0–1; I–5	I-0; 0-1; I-6
P4	0–0	1-0	0-1; 0-4	0–0; I–5

Table 1Armature of swimming legs of Duoergasilus basilongus n.gen., n. sp.—adult female

Roman numeral = spines; arabic numerals = setae. P1-P4 = first to fifth swimming leg

Type host: Astyanax fasciatus (Cuvier, 1819) (Characiformes: Characidae), red-tailed lambari.

Site of infection: Gill filaments.

Prevalence and intensity of infection: Nine of 67 hosts examined (13.4%) were infected with 15 ± 6 (1–49) specimens of *D. basilongus* n. sp.

Type locality: Jurumirim Reservoir, Upper Paranapanema River (23°28′20.28″S, 48°38′34.40″W), municipality of Angatuba, São Paulo State, Brazil.

Specimens deposited: Holotype, INPA 2498; paratypes, INPA 2499 and INPA 2500.

ZooBank registration: urn:lsid:zoobank. org:act:DD878EA5-BB75-4F3B-8B67-B5A4F2FFF440.

Etymology: From Latin, the specific epithet refers to the elongate distal portion of the maxillary basis.

Remarks

Duoergasilus basilongus n. sp. is the type species of the newly erected genus and differs from all other ergasilid species by the characteristics mentioned in the diagnosis of the new genus (see above). The new species close resembles Tiddergasilus iheringi (Tidd, 1942) in having some features listed by Marques and Boeger [7] as diagnostic for this species, as (1) P1 enp 2-segmented, (2) spines on P2 exp present, (3) P4 enp 2-segmented, (4) antenna with short enp-2 (about three times shorter than previous segment); and (5) Claw with a sub-proximal indentation/spine on concave margin. However, D. basilongus differs from T. iheringi by having all swimming legs with 2-segmented enp (rather than P2 and P3 with 3-segmented enp in T. iheringi); an antennule 5-segmented (rather than 6-segmented in T. iheringi); and by the maxillary basis with posterior part reduced, ending as a thin extension (rather than toothed on convex margin in T. iheringi).

The following taxonomic key is provided for Ergasilidae genera, including the most recently described genera (e.g., *Majalincola* Tang et Kalman, 2008, *Tiddergasilus*, and *Urogasilus*) and the new genus proposed herein:

1A—Cephalosome with post-oral or pre-oral elongation (neck) 2

1B—Body typically cyclopiform; cephalosome without such elongation 5

2A—Antennary region of cephalosome separated from oral region by neck; mouthparts located posteriorly to neck 3

2B—Antennary region of cephalosome not separated from oral region by neck; mouthparts located anteriorly to neck 4

3A—Pedigerous somites and urosomites well-defined, not fused; P1 with enp 3-segmented; P5 with 1-segmented exp, armed with two setae *Majalincola*

3B—Pedigerous somites and urosomites ill-defined, without clear external segmentation; P1 with enp 2-segmented; P5 reduced, represented by seta *Therodamas*

4A—P4 absent Mugilicola Tripathi, 1960

4B—P4 biramous, with 2-segmented enp and 1-segmented exp Paeonodes Wilson C.B., 1944

5A—Large, posteriorly directed stylets (retrostylets) present at posterolateral angles of dorsal cephalic shield 6

5B—Dorsal cephalic shield without such stylets 10

6A—Antenna with single claw 7

6B—Antenna with two claws 8

7A—P4 with 3-segmented enp and 2-segmented exp Pseudovaigamus

7B—P4 with 2-segmented enp and 1-segmented exp *Vaigamus*

8A—Rostrum with posteriorly directed spine (rostral spine); large spatulate process present adjacent to retrostylets on dorsal cephalic shield *Gamispatulus*

8B—Rostrum without such spine; retrostylets simple, without adjacent process 9

9A—Antennule 6-segmented Gamidactylus

9B—Antennule 5-segmented Gamispinus

10A—P4 biramous 14

10B—P4 reduced or absent 11

11A—Fourth pedigerous, fifth pedigerous, and genitaldouble somites fused to form trunk; P2-P3 with enp 2-segmented *Urogasilus*

11B—Fourth pedigerous, fifth pedigerous, and genitaldouble somites not fused to form trunk; P2-P3 with enp 3-segmented 12

12A—P4 absent Brasergasilus

12B—P4 reduced, represented by seta 13

13A—Antennal enp-1 produced proximally to form long acute process; enp-2 longer than claw, strongly recurved *Abergasilus* Hewitt, 1978

13B—Antennal enp-1 without such process; enp-2 shorter than claw, non-recurved *Rhinergasilus*

14A—Antenna with extremely elongated enp-1; enp-2 modified to receive claw of opposite antenna 15

14B—Antenna not interlocking in this manner 17

15A—P1 with enp-2 rod-shaped, unarmed Miracetyma 15B—P1 with enp-2 armed with at least three elements (spines and/or setae) 16

16A—P1 with enp-2 cylindrical, ending in three small points, without setae *Amplexibranchius*

16B—P1 with enp-2 armed at least with five elements (two spines and three or more setae) Acusicola

17A—Antenna with three claws Paraergasilus Markevich, 1937

17B—Antenna with one or two claws 18

18A—Antenna with two claws *Thersitina* Norman, 1905

18B—Antenna with single claw 19

19A—Antennal segments covered by loose, hyaline, cuticular membrane *Dermoergasilus* Ho et Do, 1982

19B—Antennal segments not covered by loose, hyaline, cuticular membrane 20

20A—Antennal enp-1 and enp-2 with one or two prominent teeth on inner margin *Prehendorastrus*

20B—Antennal enp-1 and enp-2 without such teeth 21

21A—P2–P3 with enp 2-segmented *Duoergasilus* n. gen.

21B-P2-P3 with enp 3-segmented 22

22A—Antennal claw barbed, with conspicuous barb on concave margin *Gauchergasilus*

22B—Antennal claw without such barb 23

23A—Basis of P1 with posterior spinous process between rami; enp-2 with large spatulate spine on outer margin *Neoergasilus*

23B—Basis of P1 without such process; enp-2 without modified spine 24

24A—P1 with enp-2 about 2.0 times longer than other endopodal segments *Nipergasilus* Yamaguti, 1939

24B-P1 with endopodal segments similar in size 25

25A—First to fourth pedigerous somite inflated and fused to cephalosome *Teredophilus* Rancurel, 1954

25B—Pedigerous somites typically well defined, rarely all fused 26

26A—Free pedigerous somites about equal in width or weakly tapering posteriorly *Sinergasilus* Yin, 1949

26B—Prosome tapering distally 27

27A—Antennal enp-2 shorter than claw; enp-1 and enp-2 without sensillum on inner margin; claw recurved *Pindapixara*

27B—Antennal enp-2 typically longer than claw; enp-1 and enp-2 typically armed with one or two sensilla; claw curved *Ergasilus*

Discussion

The Jurumirim dam is the first of 11 cascading dams along the main course of Paranapanema River and creates a reservoir for regulating others further downstream. This dam lake harbours a native ichthyofauna consisting of 50 species representing 14 families, mostly of Characiformes (Characidae, 17 spp.; including five species of Astyanax) and Siluriformes (see [20]). With regard to the parasite fauna, over than 50 parasite species have already been reported parasitizing fishes in this reservoir, with a predominance of monogeneans (about 35 spp.) [20-23]. The majority of the reports contain a description of new parasite species [21-23] or the record of new hosts and/ or localities for several parasites [24-31]. In relation to the parasitic crustacean fauna, one cymothoid isopod was found parasitizing Galeocharax knerii (Steindachner, 1879), and two copepods, Ergasilus chelangulatus Thatcher et Brasil-Sato, 2008 and Lernaea cyprinacea Linnaeus, 1758 were reported parasitizing Pimelodus maculatus Lacepède, 1803 and Steindachnerina insculpta (Fernández-Yépez, 1948), respectively [20, 24, 28]. Acosta et al. [30] has evaluated the helminth fauna of A. fasciatus from the Taquari River, a tributary of Jurumirm Reservoir, and found seven species of monogeneans, two digeneans (including a non-identified metacercaria), and two nematodes (including a non-identified larva). The monogeneans, Notozothecium sp. and Cacatuocotyle paranaensis Boeger, Domingues et Kritsky, 1997, represented the first record of these parasites on A. fasciatus (see Acosta et al. [30]). Despite this study, there is no report of parasitic crustaceans on A. fasciatus in Jurumirm Reservoir, so this represents the first study about the parasitic crustacean fauna of A. fasciatus in this dam lake.

Astyanax is a speciose genus with over than 150 valid species [9], many of which have recently discovered [32]. In Brazil, Astyanax is also a diversified genus, with several species occurring in different rivers and other aquatic habitats [11]. Although some Astyanax spp. have been extensively studied in spite of their parasitic fauna, such as Astyanax lacustris (Lütken, 1875) (=Astyanax altiparanae Garutti et Britski, 2000) and A. fasciatus, there are few records of parasitic crustaceans associated with fishes from this genus (see Luque et al. [6]). Currently, over than 90 parasites species from seven phyla have already been reported parasitizing A. fasciatus in the Neotropical region (Table 2). Ergasilids were reported from three Astyanax spp.: Astyanax altiparanae Garutti et Britski, 2000 (Acusicola sp., Brasergasilus sp., and Vaigamus sp.), Astyanax bimaculatus (Linnaeus, 1758) (Ergasilus sp.), and A. fasciatus (Ergasilus sp.) [6, 14]. Paraguassú and Luque [14] have evaluated the parasite fauna of four fish species from Lajes Reservoir in the State of Rio de Janeiro and found Ergasilus sp. parasitizing the gills of A. fasciatus. It was the first record of an ergasilid parasitizing the gills of this fish, however, the authors did not provide a morphologic description or images of the specimens found (see [14]).

Duoergasilus basilongus n. sp. represents the first record of a parasitic copepod on A. fasciatus in Jurumirim

Acta Parasitologica

Table 2	Metazoan	parasites	of Astyanax	fasciatus	(Cuvier,	1819)
---------	----------	-----------	-------------	-----------	----------	-------

Parasite	Site	References
Acanthocephala		
Quadrigyrus torquatus Van Cleave, 1920	Intestine	[33]
Pseudoleptorhynchoides lamothei Salgado-Maldonado, 1976	Intestine	[34]
Southwellina hispida (Van Cleave, 1925) (larvae)	Liver, mesentery	[34]
Annelida		
Hirudinea		
Glossiphoniidae gen. sp.	Gill,skin	[14, 35]
Arthropoda		
Branchiura		
Argulus sp.	Fins, skin	[34]
Dipteropeltis hirundo Calman, 1912	Gill	[6]
Copepoda		
Ergasilus sp.	Gill	[14, 35, 36]
Lernaea cyprinacea Linnaeus, 1758	Unspecified site	[37]
Cnidaria		
Myxozoa		
Henneguya bergamini Guimarães, 1931	Body cavity	[38, 39]
Henneguya cesarpintoi Guimarães, 1931	Gill cavity	[38–40]
Henneguya hoimba Cordeiro et Gioia, 1987	Gill	[35, 36, 38, 39]
Henneguya wenyoni Pinto, 1928	Gill	[33, 40]
Henneguya travassosi Guimarães et Bergamini, 1933	Muscles, skin	[35, 36, 38–40]
Henneguya sp.	Blood	[41]
Mollusca		
Bivalvia		
Diplodon delodontus (Lamarck, 1819)	Fins, gill, skin	[35]
Nematoda		
Ascarididae gen. sp (larvae)	Unspecified site	[42]
Brevimulticaecum sp. (larvae)	Body cavity, intestinal cecum	[43]
<i>Capillaria (Hepatocapillaria) cyprinodonticola</i> Huff- man et Bullock, 1973	Intestine. liver	[44]
Capillaria sentinosa Travassos, 1927	Intestine	[30]
Capillaria sp.	Intestine	[30, 42]
Capillostrongyloides sentinosa Travassos, 1927	Stomach	[30, 33, 36, 42, 45]
Capillostrongyloides sp.	Intestine	[46]
Contracaecum sp. (adult and larvae)	Body cavity, intestine, liver, mesentery, stomach	[30, 36, 42–44]
Contracaecum sp. type 1 (larvae)	Body cavity	[30, 36, 42]
Contracaecum sp. type 2 (larvae)	Body cavity	[30, 36, 42]
Eustrongylides sp.	Body cavity	[43]
Goezia sp. (larvae)	Stomach	[43]
Oligogonotylus manteri Watson, 1976	Intestine	[46]
Olmeca laurae Lamothe-Argumedo et Pineda-López, 1990	Intestine	[46]
Paraseuratum albidum Kloss, 1966	Intestine	[33, 42]
Procamallanus (Spirocamallanus) hilarii Vaz et Pereira, 1934	Intestine, stomach	[30, 36, 42, 47]
Procamallanus (Spirocamallanus) iheringi Travassos, Artigas et Pereira, 1928	Intestine	[33, 42]
Procamallanus (Spirocamallanus) inopinatus Travas- sos, Artigas et Pereira, 1928	Intestine	[30, 33, 36, 42, 48, 49]

Acta Parasitologica

Table 2 (continued)

Parasite	Site	References
Procamallanus (Spirocamallanus) neocaballeroi Caballero-Deloya, 1977	Intestine	[30, 49, 50]
Procamallanus (Spirocamallanus) rebecae (Andrade- Salas, Pineda-López et García-Magaña, 1994)	Intestine	[46]
Procamallanus (Spirocamallanus) saofrancicensis Moreira, Oliveira et Costa, 1994	Intestinal cecum, intestine	[30, 42, 43]
Procamallanus (Spirocamallanus) sp. (adult and larvae)	Intestine	[42, 51]
Procamallanus sp. (adult and larvae)	Body cavity, intestine	[42, 43]
Rhabdochona acuminata Molin, 1860	Intestine	[14, 30, 36, 42]
Rhabdochona fasciata Kloss, 1966	Intestine	[30, 33]
Rhabdochona mexicana Caspeta-Mandujano, Moravec et Salgado-Maldonado, 2000	Intestine	[34, 44, 46, 52]
Rhabdochona sp.	Body cavity, intestinal cecum, intestine	[43]
Spinitecus rodolphiheringi Vaz et Pereira, 1934	Stomach	[43]
Spiroxys sp. (larvae)	Body cavity, intestine, liver, stomach	[43]
Pletyheminthes		
Trematoda		
Acanthostomum americanum Pérez-Vigueras, 1956		[46]
Allocreadiidae gen. sp.	Intestine	[50]
Antorchis lintoni Travassos, Artigas et Pereira, 1928	Intestine	[30, 33, 36]
Ascocotyle (Phagicola) longa Ransom, 1920	Heart, liver, mesentery,	[34]
Ascocotyle (Phagicola) nana (Ransom, 1920)	Gill, intestinal wall, liver, mesentery, muscles, viscera	[53]
Ascocotyle (Ascocotyle) tenuicollis (Price, 1935)	Heart, muscles	[53]
Auricolostoma astyanace Scholz, Aguirre-Macedo et Choudhury, 2004	Intestine	[30, 46, 54]
Austrodiplostomum compactum Lutz, 1928	Eye	[54]
Bacciger astyanactis Lunaschi, 1998	Rectum	[55, 56]
Chalcinotrema ruedasueltensis Thatcher, 1978	Intestine	[30, 33, 57]
Centrocestus formosanus (Nishigori, 1924)	Gill	[34, 44]
Clinostomum complanatum (Rudolphi, 1814)	Body cavity, fins, operculum	[44]
Dadaytremoides grandistomis Thatcher, 1979	Intestine	[30, 33, 58]
Dendrochis retrobiloba Volonterio et Ponce de Léon, 2005	Swim bladder	[59]
<i>Echinochasmus leopoldinae</i> (Scholz, Ditrich et Vargas- Vazquez, 1996)	Gill, stomach wall	[34]
Echinochasmus macrocaudatus Ditrich, Scholz et Vargas-Vazquez, 1997	Gill	[60]
Genarchella astyanactis (Watson, 1976)	Stomach	[46, 60–62]
Genarchella fragilis Lunaschi, 1990	Stomach	[56]
<i>Genarchella genarchella</i> (Travassos, Artigas et Pereira, 1928)	Unspecified site	[36]
Genarchella overstreeti (Brooks, Mayes et Thorson, 1979)	Stomach	[56, 63]
Genarchella parva Travassos, Artigas et Pereira, 1928	Intestine, Stomach	[30, 36, 56, 62]
Halipegus dubius Klein, 1905	Unspecified site	[33]
Halipegus tropicus Manter, 1936	Unspecified site	[30, 33]
Halipegus sp.	Unspecified site	[30, 64]
Magnivitellinum simplex Kloss, 1966	Intestine	[34, 44, 46, 50, 56]
Oligogonotylus manteri Watson, 1976	Intestine	[46]
Olmeca laurae Lamothe-Argumedo et Pineda-López, 1990	Intestine	[46]

Parasite	Site	References
Prosorhynchus costai Travassos, Artigas et Pereira, 1928	Unspecified site	[30, 33, 36]
Prosthenhystera obesa Diesing, 1850	Gall bladder	[30, 33, 46, 50, 60]
Saccocoelioides chauhani Lamothe-Argumedo, 1974	Intestine	[46, 65]
Saccocoelioides octavus Szidat, 1970	Intestine, Pyloric cecum	[30, 33, 56]
Saccocoelioides sp.	Unspecified site	[50]
Uvulifer sp.	Fins, skin	[44]
<i>Wallinia brasiliensis</i> Dias, Müller, Almeida, Silva, Azevedo, Pérez-Ponce de Léon et Abdallah, 2018	Intestine	[66]
Cestoda		
Dendrouterina papillifera (Fuhrmann, 1908)	Gall bladder	[67]
Glossocercus aurita (Rudolphi, 1819)	Body, liver, mesentery	[44, 67]
Schyzocotyle acheilognathi (Yamaguti, 1934)	Intestine	[44]
Monogenea		
Anacanthocotyle anacanthocotyle Kritsky et Fritts, 1970	Fins, gill, skin	[30, 33, 46, 68–70]
<i>Cacatuocotyle guaibensis</i> Gallas, Calegaro-Marques et Amato, 2014	Skin	[71]
Cacatuocotyle paranaensis Boeger, Domingues et Kritsky, 1997	Skin	[30]
Characithecium costaricensis Price et Bussing, 1967	Gill, nasal operculum, skin	[30, 33, 35, 44, 46, 70–76]
<i>Characithecium triprolatum</i> Gallas, Calegaro-Marques et Amato, 2016	Gill, skin	[77]
Diaphorocleidus kabatai Molnar, Hanek et Fernando, 1974	Gill, nasal operculum, skin	[30, 33, 36, 75]
Gyrodactylus neotropicalis Kritsky et Fritts, 1970	Fins, gill, skin	[30, 33, 46, 68–70]
Gyrodactylus sp.	Skin	[30]
Jainus hexops Kritsky et Leiby, 1972	Gill	[30, 33, 46, 72, 76]
Jainus sp.	nasal operculum, skin	[30]
Notozothecium sp.	Skin	[30]
Palombitrema heteroancistrium Price et Bussing, 1968	Gill	[30, 46, 70, 72, 74–76, 78, 79]
Urocleidoides anops Kritsky et Thatcher, 1974	Gill	[70]
Urocleidoides strombicirrus Price et Bussing, 1967	Gill	[30, 33, 46, 74–76]
Urocleidoides trinidadensis Molnar, Hanek et Fernando, 1974	Unspecified site	[33]
<i>Trinibaculum pinctiarum</i> Narciso, Brandão, Yamada, Benine et Silva, 2014	Gill	[21]

Table 2 (continued)

Reservoir, as well as represents the first description to species level of an ergasilid infecting an Astyanax species in Brazil.

Acknowledgements This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Proc. #2011/24159-3). R.B.N thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support given to the study (132844/2018-4). R.J.S. is supported by FAPESP #2016/50377-1; CNPq #309125/2017-0; CNPq-PROTAX #440496/2015-2.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflicts of interest.

Ethical Standards All applicable international, national, and/or institutional guidelines for the use and care of animals were followed.

References

- 1. Taborda NL, Paschoal F, Luque JL (2016) A new species of Ergasilus (Copepoda: Ergasilidae) from Geophagus altifrons and G. argyrostictus (Perciformes: Cichlidae) in the Brazilian Amazon. Acta Parasitol 61:549-555. https://doi.org/10.1515/ ap-2016-0073
- 2. Boxshall GA (2016) A new species of Ergasilus von Nordmann, 1832 (Copepoda: Cyclopoida) from the gills of a dasyatid ray, Himantura oxyrhyncha (Sauvage, 1878) from West Kalimantan,

Indonesia. Zootaxa 4174:93-103. https://doi.org/10.11646/ zootaxa.4174.1.6

- 3. Boxshall GA, Halsey SH (2004) An introduction to copepod diversity. Ray Society, London
- 4. Thatcher VE (1998) Copepods and fishes in the Brazilian Amazon. J Mar Syst 15:97–112. https://doi.org/10.1016/S0924 -7963(97)00043-2
- Piasecki W, Goodwin AE, Eiras JC, Nowak BF (2004) Importance of copepoda in freshwater aquaculture. Zool Stud 43:193–205
- Luque JL, Pavanelli G, Vieira F, Takemoto R, Eiras J (2013) Checklist of Crustacea parasitizing fishes from Brazil. Check List 9:1449–1470. https://doi.org/10.15560/9.6.1449
- Marques TM, Boeger WA (2018) Proposal of *Tiddergasilus* gen. nov. (Ergasilidae: Cyclopoida) for *T. iheringi* comb. nov. from the gills of *Hoplias malabaricus* (Erythrinidae: Characiformes) from Brazil. Zool 35:1–6. https://doi.org/10.3897/zoologia.35.e21577
- Boxshall GA, Defaye D (2008) Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiol 595:195–207. https://doi.org/10.1007/s10750-007-9014-4
- Zanata AM, Burger R, Camelier P (2018) Two new species of Astyanax Baird & Girard (Characiformes: Characidae) from the upper rio Paraguaçu basin, Chapada Diamantina, Bahia, Brazil. Zootaxa 4438:471–490. https://doi.org/10.11646/zoota xa.4438.3.3
- Ornelas-García CP, Domínguez-Domínguez O, Doadrio I (2008) Evolutionary history of the fish genus Astyanax Baird and Girard (1854) (Actinopterygii, Characidae) in Mesoamerica reveals multiple morphological homoplasies. BMC Evol Biol 8:340–357. https://doi.org/10.1186/1471-2148-8-340
- 11. Reis RE, Kullander SO, Ferraris CJ (2003) Check list of the freshwater fishes of South and Central America. Edipucrs, Porto Alegre
- Luque JL, Poulin R (2007) Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity. Parasitol 134:865–878. https://doi.org/10.1017/S00311820070022 72
- Zago AC, Franceschini L, Müller MI, Silva RJ (2018) A new species of *Cacatuocotyle* (Monogenea, Dactylogyridae) parasitizing *Astyanax* spp. (Characiformes, Characidae) from Brazil, including molecular data and a key to species identification. Acta Parasitol 63:261–269. https://doi.org/10.1515/ap-2018-0030
- Paraguassú AR, Luque JL (2007) Metazoários parasitos de seis espécies de peixes do reservatório de Lajes, Estado do Rio de Janeiro, Brasil. Braz J Vet Parasitol 16:121–128. https://doi. org/10.1590/S1984-29612007000300002
- 15. Boxshall GA, Montú MA (1997) Copepods parasitic on Brazilian coastal fishes: a handbook. Nauplius 5:1–225
- El-Rashidy H, Boxshall GA (1999) Ergasilid copepods (Poecilostomatoida) from the gills of primitive Mugilidae (grey mullets). Syst Parasitol 42:161–168. https://doi.org/10.1023/A:1006075223 683
- Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583. https://doi.org/10.1645/13-394.1
- Kabata Z (1992) Copepods parasitic on fishes: Keys and notes for identification of the species (synopsis of British fauna). Universal Book Services, Netherlands
- El-Rashidy H (1999) Copepods and grey mullets (Mugilidae). PhD Thesis, University of London
- 20. Silva RJ (2016) Integridade Ambiental da represa de Jurumirim: ictiofauna e relações ecológicas. Editora Unesp, São Paulo
- 21. Narciso RB, Brandão H, Yamada FH, Benine RC, Silva RJ (2014) A new species of *Trinibaculum* (Monogenea: Dactylogyridae) parasite of the gills of *Astyanax fasciatus* (Cuvier, 1819) (Characiformes: Characidae) in a neotropical river, São Paulo State, Brazil. Neotrop Helminthol 8:85–95

- Yamada FH, Brandão H, Yamada POF, Silva RJ (2015) *Philocorydoras longus* sp. n. (Monogenea, Dactylogyridae) from the gills of *Hoplosternum littorale* (Siluriformes, Callichthyidae) in Southeastern Brazil and the reassignment of two species from the genus *Urocleidoides* to *Philocorydoras*. Helminthol 52:331–335. https://doi.org/10.1515/helmin-2015-0052
- Zago AC, Yamada FH, Franceschini L, Bongiovani MF, Yamada POF, Silva RJ (2017) A new species of *Tereancistrum* (Monogenea, Dactylogyridae) from the gills of three *Leporinus* species (Characiformes, Anostomidae) and a revised description of *Tereancistrum parvus*. An Acad Bras Cienc 89:1121–1131. https:// doi.org/10.1590/0001-3765201720160628
- 24. Acosta AA, Carvalho ED, Silva RJ (2013) First record of *Lernaea cyprinacea* (Copepoda) in a native fish species from a Brazilian river. Neotrop Helminthol 7:7–12
- Brandão H, Toledo GM, Wunderlich AC, Ramos IP, Carvalho ED, Silva RJ (2013) Occurrence of *Braga cigarra* (Cymothoidae) parasitizing *Galeocharax knerii* (Characidae) from affluents of Jurumirim Reservoir, Brazil. Braz J Vet Parasitol 22:292–296. https://doi.org/10.1590/S1984-29612013005000002
- Brandão H, Yamada FH, Toledo GM, Carvalho ED, Silva RJ (2013) Monogeneans (Dactylogyridae) parasitizing gills of *Salminus hilarii* from a Neotropical Reservoir. Braz J Vet Parasitol 22:579–587. https://doi.org/10.1590/S1984-29612013000400020
- Narciso RB, Brandão H, Yamada FH, Silva RJ (2013) *Rhinox-enus Bulbovaginatus* (Monogenea, Dactylogyridae) parasite of the nasal cavities of *Salminus Hilarii* (Characiformes, Characidae) in a Neotropical river, sp, Brazil. Neotrop Helminthol 7:335–339
- Azevedo RK, Brandão H, Abdallah VD, Silva RJ (2014) First record of an epibiont protozoan *Epistylis* sp. (Ciliophora, Peritrichia) attached to *Ergasilus chelangulatus* (Ergasilidae) in Brazil. Braz J Biol 74:460–463. https://doi.org/10.1590/1519-6984.10112
- Brandão H, Yamada FH, Toledo GM, Acosta AA, Carvalho ED, Silva RJ (2014) Parasitism by *Sphincterodiplostomum musculosum* (Digenea, Diplostomidae) metacercariae in the eyes of *Steindachnerina insculpta* (Characiformes, Curimatidae). Rev Bras Cienc Vet 23:144–149. https://doi.org/10.1590/S1984-29612 014038
- Acosta AA, Queiroz J, Brandão H, Silva RJ (2015) Helminth fauna of Astyanax fasciatus Cuvier, 1819, in two distinct sites of the Taquari River, São Paulo State, Brazil. Braz J Biol 75:242– 250. https://doi.org/10.1590/1519-6984.15113
- Acosta AA, Silva RJ (2015) First record of *Hysterothylacium* sp. Moravec, Kohn et Fernandes, 1993 larvae (Nematoda: Anisakidae) infecting the ornamental fish *Hyphessobrycon eques* Steindachner, 1882 (Characiformes, Characidae). Braz J Biol 75:638–642. https://doi.org/10.1590/1519-6984.19913
- Vilela MJA, Neto FS, Carvalho FR (2018) Conservation status of *Astyanax* biotae (Characiformes: Characidae) in Mato Grosso do Sul, upper Paraná River basin, Brazil. Biotemas 31:47–56
- 33. Thatcher VE (2006) Amazon fish parasites. Pensoft, Moscow
- Violante-González J, Aguirre-Macedo L, Mendoza-Franco EF (2007) A checklist of metazoan parasites of fish from Tres Palos Lagoon, Guerrero, Mexico. Parasitol Res 102:151–161. https:// doi.org/10.1007/s00436-007-0733-2
- Pavanelli GC, Takemoto RM, Eiras JC (2013) Parasitologia: Peixes de água doce do Brasil. Eduem, Maringá
- Eiras JC, Takemoto RM, Pavanelli GC (2010) Diversidade dos parasites de peixes de água doce do Brasil. Cliche Tec, Maringá
- Düpont A, Lobo EA (2011) First record of the ocurrence of *Lernaea cyprinacea* (Linnaeus, 1758) on *Astyanax fasciatus* (Cuvier, 1819), Pardinho River, RS, Brazil. Cad Pesqui Ser Biol 23:20–25
- Gioia I, Cordeiro NS (1996) Brazilian myxosporidians' check-list (Myxozoa). Acta Protozool 35:137–149
- Wagner EJ (2016) A guide to the identification of tailed Myxobolidae of the world: *Dicauda, Hennegoides, Henneguya*,

Laterocapsulata, Neohenneguya, Phlogospora, Tetrauronema, Trigonosporus, and Unicauda. Fish Creek Records, Utah

- 40. Martins ML, Onaka EM (2006) Henneguya garavelli n. sp. and Myxobolus peculiaris n. sp. (Myxozoa: Myxobolidae) in the gills of Cyphocharax nagelli (Osteichthyes: Curimatidae) from Rio do Peixe Reservoir, São José do Rio Pardo, São Paulo. Braz Vet Parasitol 137:253–261. https://doi.org/10.1016/j.vetpa r.2005.12.023
- Caetano PHG, Dutra A, Thomé MPM (2012) Occurrence of *Henneguya* sp. (Thélohan, 1892) in the blood of *Astyanax fas ciatus* (CUVIER, 1819) in a stream of the Muriaé River basin in Itaperuna, RJ. Acta Biomed Bras 3:38–41
- 42. Luque JL, Aguiar JC, Vieira FM, Gibson DI, Santos CP (2011) Checklist of Nematoda associated with fishes of Brazil. Zootaxa 3082:1–88. https://doi.org/10.11646/zootaxa.3082.1.1
- 43. Vieira-Menezes FG, Costa DPC, Brasil-Sato C (2017) Nematodes of *Astyanax fasciatus* (Actinopterygii: Characidae) and their parasitic indices in the São Francisco river, Brazil. Braz J Vet Parasitol 26:10–16. https://doi.org/10.1590/s1984-29612 016074
- 44. Salgado-Maldonado G, Cabañas-Carranza G, Mandujano JMC, Soto-Galera E, Mayén-Peña E, Brailovsky D, Báez-Valé R (2001) Helminth parasites of freshwater fishes of the Balsas River drainage basin of southwestern Mexico. Comp Parasitol 68:196–203
- Freitas JF, Lent H (1935) Capillariinae de animaes de sangue frio:(Nematoda: Trichuroidea). Men Inst Oswaldo Cruz 30:241–284
- Salgado-Maldonado G (2008) Helminth parasites of freshwater fish from Central America. Zootaxa 1915:29–53
- Gallas MC, Calegaro-Marques C, Amato SB (2015) Supplemental observations on the morphology of *Procamallanus (Spirocamallanus) hilarii* (Nematoda: Camallanidae) parasitizing two species of *Astyanax* (Characiformes: Characidae) and ecological analyses. Rev Mex Biodivers 86:590–596. https://doi.org/10.1016/j. rmb.2015.07.005
- Kohn A, Fernandes BMM, Macedo B, Abramson B (1985) Helminths parasites of freshwater fishes from Pirassununga, SP, Brazil. Mem Inst Oswaldo Cruz 80:327–336. https://doi.org/10.1590/ S0074-02761985000300009
- Moravec F, Vargas-Vázquez J (1996) The development of *Proca-mallanus* (*Spirocamallanus*) neocaballeroi (Nematoda: Camallanidae), a parasite of *Astyanax fasciatus* (Pisces) in Mexico. Folia Parasitol 43:61–70
- Aguirre-Macedo ML, Scholz T, González-Solís D, Vidal-Martínez VM, Posel P, Arjona-Torres G, Dumailo S, Siu-Estrada E (2001) Some adult endohelminths parasitizing freshwater fishes from the Atlantic drainages of Nicaragua. Comp Parasitol 68:190–195
- 51. Kohn A, Fernandes BMM, Pipolo HV, Godoy MP (1988) Helmintos parasitos de peixes das usinas hidrelétricas da Eletrosul (Brasil). II. Reservatórios de Salto Osório e de Salto Santiago, Bacia do Rio Iguaçú. Mem Inst Oswaldo Cruz 83:299–303
- Caspeta-Mandujano JM, Moravec F, Salgado-Maldonado G (2000) *Rhabdochonamexicana* sp. n. (Nematoda: Rhabdochonidae) from the intestine of characid fishes in Mexico. Folia Parasitol 47:211–215
- Scholz T, Vargas-Vázquez J, Aguirre-Macedo L, Vidal-Martínez VM (1997) Species of Ascocotyle Looss, 1899 (Digenea: Heterophyidae) of the Yucatan Peninsula, Mexico, and notes on their life-cycles. Syst Parasitol 36:161–181. https://doi. org/10.1023/A:1005757929710
- Scholz T, Aguirre-Macedo ML, Choudhury A (2004) Auriculostoma astyanace n. gen., n. sp (Digenea: Allocreadiidae), from the banded Astyanax, Astyanax fasciatus (Characiformes: Characidae), from Nicaragua, with a reevaluation of neotropical Crepidostomum spp. J Parasitol 90:1128–1132. https://doi.org/10.1645/ GE-3275

- Lunaschi LI (1998) Primer registro del género Bacciger Nicoll, 1914 (Fellodistomidae, Baccigerinae) en peces de agua dulce de Argentina. Physis 56:17–19
- 56. Ostrowski de Núñez M, Arredondo NJ, Gil de Pertierra AA (2017) Adult Trematodes (Platyhelminthes) of freshwater fishes from Argentina: a checklist. Revue Suisse Zool 124:91–113. https://doi.org/10.5281/zenodo.322669
- 57. Thatcher VE (1978) Quatro espécies novas da família Haploporidae (Trematoda: Digenea) de peixes de água doce da Colômbia, com uma revisão do gênero Saccocoelioides Szidat, 1954. Acta Amaz 8:477–484
- Thatcher VE (1979) Paramphistomidae (Trematoda: Digenea) de peixes de água doce: dois novos gêneros da Colômbia e uma redescrição de *Dadaytrema oxycephala* (Diesing, 1836) Travassos, 1934, da Amazônia. Acta Amaz 9:203–208
- Volonterio O, Ponce de León R (2005) Description of *Dendror-chis retrobiloba* n. sp. (Digenea: Gorgoderidae) from *Astyanax fasciatus* (Teleostei: Characidae) from southern Uruguay, with an emended diagnosis of the genus *Dendrorchis*. J Parasitol 91:1204–1208. https://doi.org/10.1645/GE-3465.1
- Scholz T, Vargas-Vázquez J (1998) Trematodes from fishes of the Río Hondo River and freshwater lakes of Quintana Roo, Mexico. J Helminthol Soc Wash 65:91–95
- Watson DE (1976) Digenea of fishes from Lake Nicaragua. In: Thorson TB (ed) Investigations of the ichthyofauna of Nicaraguan Lakes. University of Nebraska, Nebraska, pp 251–260
- 62. Scholz T, Vargas-Vázquez J, Salgado-Maldonado G (1995) Revision of *Genarchella* species (Digenea: Derogenidae) parasitizing freshwater fishes in Mexico and Central America. J Nat Hist 29:1403–1417. https://doi.org/10.1080/002229395007705 91
- 63. Kohn A, Fernandes BMM, Gibson DI, Fróes OM (1990) On the Brazilian species of halipegine genera (Trematoda: Derogenidae) from fishes, with new morphological data, hosts and synonyms. Syst Parasitol 16:201–211. https://doi.org/10.1007/BF00009148
- Kohn A, Fernandes BMM (1987) Estudo comparativo dos helmintos parasitos de peixes do rio Mogi guassu, coletados nas excursoes realizadas entre 1927 e 1985. Mem Inst Oswaldo Cruz 82:483–500. https://doi.org/10.1590/S0074-02761987000400006
- Salgado-Maldonado G, Aguilar-Aguilar R, Cabañas-Carranza G, Soto-Galera E, Mendoza-Palmero C (2005) Helminth parasites in freshwater fish from the Papaloapan River basin, Mexico. Parasitol Res 96:69–89. https://doi.org/10.1007/s00436-005-1315-9
- 66. Dias KGA, Müller MI, Almeida AC, Silva RJ, Azevedo RK, Perez-Ponce de León G, Abdallah VD (2018) A new species of *Wallinia* Pearse, 1920 (Digenea: Allocreadiidae) collected from *Astyanax fasciatus* (Cuvier, 1819) and *A. lacustris* Lucena and Soares, 2016 (Characiformes: Characidae) in Brazil based on morphology and DNA sequences. Parasitol Res 117:2847–2854. https://doi.org/10.1007/s00436-018-5974-8
- 67. Ortega-Olivares MP, García-Prieto L, García-Varela M (2014) Gryporhynchidae (Cestoda: Cyclophyllidea) in Mexico: species list, hosts, distribution and new records. Zootaxa 3795:101–125. https://doi.org/10.11646/zootaxa.3795.2.1
- Kritsky DC, Fritts TH (1970) Monogenetic Trematodes from Costa Rica with the proposal of *Anacanthocotyle* gen. n. (Gyrodactylidae: Isancistrinae). Proc Helminthol Soc Wash 37:63–68
- Boeger W, Popazoglo F (1995) Neotropical Monogenoidea. 23. Two new species of *Gyrodactylus* (Gyrodactylidae) from a cichlid and an erythrinid fish of Southeastern Brazil. Mem Inst Oswaldo Cruz 90:689–694. https://doi.org/10.1590/S0074-0276199500 0600006
- Mendoza-Franco EF, Scholz T, Vivas-Rodríguez C, Vargas-Vázquez J (1999) Monogeneas of freshwater fishes from cenotes (sinkholes) of the Yucatan Peninsula, Mexico. Folia Parasitol 46:267–273

- Gallas M, Calegaro-Marques C, Amato SB (2014) A new species of *Cacatuocotyle* (Monogenea, Dactylogyridae) parasitizing two species of *Astyanax* (Ostariophysi, Characidae) in southern Brazil. Acta Parasitol 59:638–642. https://doi.org/10.2478/s1168 6-014-0283-6
- 72. Kritsky DC, Leiby PD (1972) Dactylogyridae (Monogenea) from the freshwater fish, Astyanax fasciatus (Cuvier), in Costa Rica, with descriptions of Jainus hexops sp. n., Urocleidoides costaricensis, and U. heteroancistrium combs, n. Proc Helminthol Soc Wash 39:227–230
- 73. Gioia I, Cordeiro NS, Artigas PT (1988) Urocleidoides astyanacis n. sp. (Mongenia ancyrocephalinae) from freschwater characidians on the genus Astyanax. Mem Inst Oswaldo Cruz 83:13–15. https ://doi.org/10.1590/S0074-02761988000100002
- 74. Mendoza-Franco EF, Posel P, Dumailo S (2003) Monogeneas (Dactylogyridae: Ancyrocephalinae) of freshwater fishes from the Caribbean coast of Nicaragua. Comp Parasitol 70:32–41. https://doi.org/10.1654/1525-2647(2003)070%5b0032:MDAOF F%5d2.0.CO;2
- 75. Mendoza-Franco EF, Reina RG, Torchin ME (2009) Dactylogyrids (Monogenoidea) parasitizing the gills of Astyanax spp. (Characidae) from Panama and Southeast Mexico, a new species of Diaphorocleidus and a proposal for Characithecium n. gen. J Parasitol 95:46–55. https://doi.org/10.1645/GE-1592.1
- Agarwal N, Kritsky DC (1998) Neotropical Monogenoidea.
 33. Three new species of Ancistrohaptor n. g. (Dactylogyridae,

Ancyrocephalinae) on *Triportheus* spp. (Teleostei, Characidae) from Brazil, with checklists of ancyrocephalines recorded from neotropical characiform fishes. Syst Parasitol 39:59–69. https://doi.org/10.1023/A:1005896323016

- 77. Gallas M, Calegaro-Marques C, Amato SB (2016) A new species of *Characithecium* (Monogenea: Dactylogyridae) from external surface and gills of two species of *Astyanax* (Ostariophysi: Characidae) in southern Brazil. Rev Mex Biodivers 87:903–907. https ://doi.org/10.1016/j.rmb.2016.06.011
- Price CE, Bussing WA (1968) Monogenean parasites of Costa Rican fishes. II. Proposal of *Palombitrema heteroancistrium* n. gen., n. sp. Proc Helminthol Soc Wash 35:54–57
- Suriano DM (1997) Palombitrema heteroancistrium Price and Bussing, 1968 (Monogenea: Ancyrocephalidae) from Astyanax (A.) fasciatus fasciatus (Cuvier, 1819) (Pisces: Characidae) in Chascomús Lake, Argentina: anatomy and systematic position. Physis 53:7-10

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.